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Abstract--A model of elastoplasticity with hardening coupled with ductile damage which allows
anisotropic change of the shape of the damage domain is presented. The assumption for the
development of the constitutive model consists in assigning the elastic and damage domains and the
free energy. The general variational formulation for the elastoplastic model coupled with damage is
derived as well as a mixed principle which is useful from the computational standpoint. Accordingly a
solution algorithm is then derived and examples are presented. c 1997 Elsevier Science Ltd.

1. INTRODCCTION

The formulation of elastoplastic models with damage has been the object of an abundant
literature in which the concepts of the damage mechanics have been applied to model creep
damage, fatigue damage with creep interaction, elasticity coupled with damage, isotropic
plastic damage and inelastic behaviour. Among others see Lemaitre and Chaboche (1978),
Krajcinovic and Fonseka (1981), llankambau and Krajcinovic (1987), Stevens and Liu
(1992), Carole et al. (1994), Fichant et al. (1995), Laschet (1995), Habraken et al. (1995),
Konke (1995).

The constitutive theories of inelastic behaviour most commonly adopted are the elasto
plasticity and the continuum damage mechanics (COM) (Lemaitre and Chaboche, 1990,
Lubliner, 1990). They have been used to represent different phenomena: the elastoplastic
theory describes the slips of the material at the microscale : the CDM is concerned with the
evolution of a material with distributed microdefects.

A material can show both elastoplastic and damage behaviour so that some ela
stoplastic theories coupled with damage have been proposed, see, e.g., the models presented
by Simo and Ju (1987), Ju (1989), Hansen and Schreyer (1994).

However, it appears that restrictive assumptions are adopted in the damage elasto
plastic models. As examples, the yield and damage functionals proposed by Hansen and
Schreyer (1994) are assumed to be homogeneous of degree one. The effective strains are
introduced in addition to the effective stresses and the plasticity variables for a damaged
material evolve in the effective strain space and are associative in the effective stress space.

The force conjugate to the elastoplastic microcrack evolution turns out to be the elastic
strain energy in Simo and Ju (1987), Lemaitre and Chaboche (1990), Hansen and Schreyer
(1994).

Moreover, the damage functional presented in Simo and Ju (1987), Ju (1989) coincides
with the damage energy release rate and the damage threshold turns out to be equal to the
damage multiplier.

As a rule, the principle of equivalent strain is always considered in the model as an
additional hypothesis of the constitutive model and is introduced in an unrelated form with
respect to the constitutive relations derived from the free energy.
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1762 F. Marotti de Sciarra

This paper presents a general formulation which encompasses in a unitary model a
family ofdamage elastoplastic constitutive models with hardening. More relaxed hypotheses
with respect to the ones adopted in the literature will be assumed.

Since plastic and damage constitutive relations are expressed in terms of multivalued
laws, the natural framework to develop a consistent analysis of the damage elastoplastic
model and of its finite step counterpart requires the recourse to the methods of the convex
analysis (Rockafellar, ]970, Hiriart-Hurruty and Lemarechal, 1993). The main results of
convex analysis and of saddle functionals, used in the paper, are collected in the appendices.

An outline of the paper is as follows. In Section 2, an elastoplastic model with hardening
is addressed as an extension of the generalized standard material proposed by Halphen
and Nguyen (1975). A novel energy-based damage model is presented and, subsequently,
elastoplasticity is coupled with damage.

The additive slip of the strain in an elastic-damage and plastic-damage part is assumed;
this approach is physically more appealing than the use of the stress split formulation, e.g.
Simo and Ju (1987), Hansen and Schreyer (1994).

The damage behaviour is described in terms of two pairs of dual variables. A pair of
damage variables is scalar and is suitable for characterizing isotropic damage processes.
The other pair of damage variables is tensorial and is introduced in order to model
anisotropic change in the shape of the damage domain.

The existence of a convex plastic domain and of a convex damage domain is assumed.
A standard behaviour is postulated for the evolution of the plastic and damage variables.
Both the yield and damage functionals are required to be convex.

For what concern the normality rule for a damage elastoplastic material, note
that local stresses in a damage material are redistributed to the undamaged microbounds
with the effect of increasing the stresses effectively acting on the material. Accordingly,
we assume that plastic flows in the actual space occur by means of the effective
stresses.

The coupling between plasticity and damage is also provided by the expression of the
free energy which yields the force associated with the elastoplastic microcrack evolution as
the sum of the elastic strain energy and of the hardening potential.

The principle of strain equivalence (see Lemaitre and Chaboche, 1990) is not intro
duced at the beginning of the model as an additional hypothesis but it follows from the
expression of the free energy. It is further shown how a different choice of the free energy
can lead to the principle of equivalent elastic energy introduced by Cordebois and Sidoroff
(1979).

In Section 3, the damage elastoplastic model is cast in an operator form corresponding
to a backward Euler scheme. The damage elastoplastic operator is proved to be conservative
so that the potential theory for monotone operator (Romano et at" 1993d) can be invoked
to evaluate the related variational formulation in the complete set of state variables.

The utility of this approach relies on the possibility of deriving all the variational
principles in a different number of state variables by enforcing Fenchel's equalities; for
nonlinear elastic problems and for plasticity with hardening see Romano et at. (1992),
(1993b,c).

Variational formulations provide valuable tools to establish existence and uniqueness
results for the solution of problems in structural mechanics and to evaluate approximate
solutions. Uniqueness is ensured if the functional to be minimized turns out to be strictly
convex (or concave). By contrast, the question of existence is a considerable challenge and
it will not be of concern in this paper.

The variational formulation in stresses and kinematic damage internal variables is
derived. It is proved that the relevant maximum problem provides a consistent basis for
developing a computational algorithm which is a generalization of the one proposed by
Simo and Ju (1987), Ju (1989).

In Section 4 the possibility of solving in cascade plasticity and damage is proved to
derive from the variational principle in stresses and kinematic damage internal variables.
The maximization of the potential can be equivalently enforced in the effective stress space
so that the solution of the elastoplastic constitutive problem for a given increment of total
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strain is obtained. This maximization can be achieved following the elastic predictor-plastic
corrector scheme in the effective stress space.

Afterwards the damage problem is solved by maximizing the potential in the space of
the damage variables. This problem can be directly solved without any iteration for a large
class of damage functionals and damage threshold function.

The elastoplastic predictor is enforced in the effective stress and in the actual strain
spaces. Hence it appears reasonable to assume that the consistent tangent operator relates
the increment of the actual strain to the increment of the effective stress. Accordingly,
following the general methodology presented in Marotti de Sciarra and Rosati (1995), the
tangent operator consistent with the Euler backward scheme is derived in Section 5.

In Section 6, the formulation presented in this paper is applied to an aluminum alloy
in the case of uniaxial monotone increasing strains and cyclic strains.

2. CONSTITUTIVE MODELS

Let us denote by ':.t the linear space of strains and by Y' the dual space of stresses a.

Assuming small deformations the total strain E E:.CZ is additively decomposed into an elastic
e and a plastic part p.

A time-independent mechanical behaviour of the body is assumed so that the time t is
conceived as a monotonically increasing parameter which merely orders successive events.

2.1. Elastoplastic model
Plastic phenomena are described in terms of kinematic internal variables :x and static

internal variables X which belong to the dual linear spaces X and X', respectively; the
variables :x account for structural rearrangements at the microscale (Reddy and Martin,
1991. Comi ct al., 1992, Romano et al., 1993c).

The elastoplastic constitutive model here addressed is an extension of the generali::ed
standard material (GSM) proposed by Halphen and Nguyen (1975).

To encompass in a unitary framework the perfect plasticity as well as the hardening
behaviour we introduce the generalized vectors (Nguyen, 1977):

e=(c,:x) p=(p,-:<) 8=(,:,0) G=(a.x)

where e, p and 8 belong to the product space 'Y" = !j' x X and G belongs to .V'" = .Y· x X'.
In the sequel, the label generalized will be omitted.

The duality pairing between product spaces will be denoted by -<",">- and is defined
as follows -<G, e>- = <a. e) + <X, :x). For simplicity, the bilinear forms in the spaces /f' x f:t
and X' x X have been denoted by the same symbol. They have the mechanical meaning of
virtual work performed by the stresses (internal static variables) for the strains (internal
kinematic variables), Panagiotopoulos (1985).

In this model the existence of a convex elastic domain C C;; y'", containing the origin
in its interior, is postulated.

The yield criterion, which defines the current yield surface, can be expressed in terms
of a convex yield functionalf: //',,1---> ~ U [ + x] so that the elastic domain C is defined in
terms of the stresses G as follows:

C = lG E: .'I" : j(G) :0.; 0;

Different kinds of hardening usually adopted in the literature can be accommodated
in the model by suitably defining the expressions of the yield functional f and of the static
internal variable x; see, e.g., Marotti de Sciarra and Rosati (1995).

2.1.1. The normality rule. The main aspect of standard plasticity is the multivaluedness
of the relation between plastic flows i> and stresses G. In fact. a convex cone of plastic flows
is associated with a given stress belonging to the boundary of the elastic domain. Vice versa,
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for any plastic flow there exists a convex set of stresses belonging to the face of the elastic
domain which the plastic flow is normal to.

Hence, the natural framework to develop a consistent analysis of the elastoplastic
continuous model and of its finite step counterpart requires the recourse to the methods of
the convex analysis. Some basic notions of convex analysis adopted in this paper are
summarized in Appendix A; for more details see Hiriart-Hurruty and Lemarechal (1993).

In standard plasticity, the plastic flow p belongs to the normal cone to the elastic
domain C at the point (1 :

where D p is the support functional (see Appendix A) of the elastic domain:

The superimposed dot denotes differentiation with respect to a (pseudo-)time t which
merely orders the events.

For any pair (p, (1) which fulfils the plastic flow rule, the following equality holds:

zero being the indicator of C since (1 belongs to the elastic domain.

Remark 2.1. The value Dp(p) is the plastic dissipation associated with the flow p and
the latter equality above represents the principle of the maximum plastic dissipation.

Further, note that the dissipation Dp turns out to be nonnegative if the null stress
belongs to the interior of C (Romano et al., 1993a). •

The indicator of C can be written in terms of the yield functionalfas follows:

Uc((1) = (L,~ /)((1),

where 9\- is the cone of the nonpositive scalars.
The subdifferential of the indicator Uc can thus be evaluated according to the former

subdifferential rule reported in Appendix A in which we set m = U"l

CUc(O') = CU~1 (.f(0')) (;/((1) = N,~ (.f(0')) cj(O').

The symbol i" denotes the subdifferential operator (see Appendix A) and the subdifferentials
cU"l- (.f(0')) and of(O') are performed with respect to the relevant arguments.

The flow rule can then be written in terms of the convex yield functionalf as follows:

where the plastic multiplier i. fulfils the condition i. E N'1l (.f(0')).
Note that the loading/unloading condition i. E N~- (.f(0')) is equivalent to the Kuhn

Tucker relations:

;. ~ 0 j(O') ~ 0 4(0') = O.

Assuming a differentiable convex yield functional j, the flow rule can be written as
follows:
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{po - Ad f'(a X). . d
"

'( ) - rr. '
p=Aya~ ...

IX = -Ad,.!(a, X)

where A~ O,f(a) ~ 0 and ;j(a) = O.
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2.2. Damage model
When a material becomes damaged, the stress at the subscale is redistributed to the

undamaged material microbonds over the effective section of resistance. The true stresses
corresponding to the undamaged material microbonds are then higher than the nominal
stresses.

In the continuum damage mechanics the stress calculated over the effective area is
called the effective stress; it has been first introduced by Kachanov (\ 956) and is the basis
on which the elastoplasticity is coupled with damage.

The effective stress a can be related to the actual stress a by means of an effective
stress operator M, depending on a damage parameter D which characterizes the state of
damage of the material, in the form :

a= M(D)(J.

The operator M takes account of the area of the microvoids and microcracks, stress
concentrations due to the microcracks and the interactions between neighbouring defects.

Since the mechanical behaviour of the microcracks depends on their orientation,
damage is an anisotropic phenomenon. Nevertheless damage theories based on a scalar
parameter are extensively used in the applications due to their simplicity on one side and
their agreement with the experimental behaviour of real models on the other side. For
example isotropic theories can be used for concrete up to a stress level which approximately
coincides with the outset of major cracking (Lubliner et al., 1989).

The scalar formulation (Simo and Ju, 1987, J u, 1989. Lemaitre and Chaboche, 1990.
Hansen and Schreyer, 1994) is the most common model of damage. The damage parameter
D reduces to a scalar damage parameter OJ E 9l and hence the operator M is defined as
1/(1-oj). Correspondingly the effective stress is given by:

a
a= 1=0

1
'

where the damage parameter OJ belongs to the interval [0,0,.]. The scalar be> is given and is
assumed to belong to the interval ]0. 1[.

The value b j = 0 corresponds to the undamaged material whereas a non-zero value
01 E ]0, be[ corresponds to a damage state; the value b l = be < 1 corresponds to the local
rupture.

In this paper the scalar damage parameter 6 j is considered as an internal kinematic
variable which governs the state of damage. The related dual static internal variable is
indicated as ~j E 9l and describes the shift of the centre of the damage domain G. The
expression of ~ I will be derived in Section 2.4.

In analogy with the elastoplastic behaviour, we introduce the static damage variable
~2' belonging to the space Y;, which describes the shape and size of the damage surface.
Note that ~2 is not a scalar variable so that anisotropic changes of the damage domain G
can be accommodated in the proposed model.

The dual kinematic internal variable is denoted by O2 and belongs to the space Y2 dual
of Y'2' Its expression will be provided in Section 2.4 in terms of ~2'

At this time the spaces associated with the plastic and damage variables will remain
unspecified to allow the following framework to be applied to a large class of elastoplastic
damage theories. For an explicit expression of the damage variables see, e.g. Simo and Ju
(1987), Zhu and Cescotto (\995).

We can now collect two sets of internal variables for damage as follows:
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(a)

~1

(b)
Fig. 1. A one-dimensional example of: (a) Young function; (b) nonnegative monotone concave

function.

where the kinematic damage variable /j belongs to the product space Y" = ~ X Y2 and the
static damage variable ~ belongs to the dual space Y;, = ~ x Y~.

In a similar way to the arguments leading to the plastic dissipative potential, it can be
assumed that there exists a surface which separates the damaging domain from the undam
aging domain. Hence, to model the irreversibility of the damage behaviour, the existence
of a damage convex domain G in the space Y", containing the origin in its interior, is
postulated.

The damage criterion is thus expressed in terms of a damage mode gl :~~ ~ u {+ 00 }
and of a nonnegative monotone concave function (current damage threshold)
92: Y~ ~ ~ u {+x }. The damage mode is assumed to be a Young function (see Appendix
A), i.e., an extended real-valued function defined in [0, + x [which is nonnegative monotone
convex with gl (0) = 0; a one-dimensional example of gl and 9"2 is given in Fig. 1. Accord
ingly, the damage domain is defined as the level set of 91 at the value 92(~2):

and turns out to be convex.

Remark 2.2. The assumption that 91 is a convex function defined in [0, + oo[ is not
restrictive. In fact, the constitutive model developed in Section 2.4 will provide a non
positive static damage internal variable ~ I so that only the non-negative part of 91 is of
interest. ..

2.2.1. Damage Jiml" rule. To describe the growth and expansion of microcracks and
damage surfaces, the evolution of the damage variable /j must be specified.

We recall that the normal cone to the convex set G at the point ~ is given by:

and coincides with the subdifferential of the indicator of G at ~ :

The evolution of the damage variables is provided by the normality rule to the set G:
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where Dd is the support functional of the damage domain G:
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Defining the damage function as g(~ I' ~c) = 91 ( - ~ I) - 92(~2)' the indicator of G can be
written in terms of the damage function 9 as follows:

where ~ - represents the cone of the nonpositive scalars.
The former subdifferential rule, reported in Appendix A, allows us to perform the

subdifferential of LJe in the form:

Hence the damage flow rule can be written in terms of a damage multiplier J1 as
follows:

where J1EN~H [g(~)], that is:

which represent the damage loading/unloading conditions.
The above conditions ensure that no further damage takes place if 9(~1' ~c) < 0 since

it turns out to be J1 = 0 and hence j = O. If, on the contrary, 9(~1o ~c) = 0 the damage
multiplier J1 can be nonvanishing and damage phenomena can occur.

Resorting to the additivity of the subdifferentiaL the flow rule can be rewritten as
follows:

Note that the same symbol ais used to define both the subdifferential of a convex functional
and the superdifferential of a concave one.

Remark 2.3. For any pair (j,~) which fulfils the damage flow rule j E Nd~) the
following equality holds:

being zero the indicator of G since ~ belongs to the damage domain. Hence, we can give
the following expression for D d :

Thus the functional Dd has the mechanical meaning of damage dissipation and the equality
above represents the principle oj" the maximum damage dissipation.

If the origin of the space Yo belongs to the interior of G. it can be proved that the
dissipation Dd turns out to be nonnegative following similar argumentations to the one
reported in Romano et al. (1993a) for the plastic behaviour. •

The damage model developed in this section allows us to consider a tensorial variable
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(2 which can describe anisotropic change of the damage domain G. A fully anisotropic
damage model in which 61 is a tensorial variable is the subject of further studies.

It is worth noting that the treatment, and in consequence the computational algorithm,
which will be developed in this paper does not depend upon the scalar or tensorial nature
of the damage variable (2' The computational algorithm can thus be specialized in the case
of a scalar or tensorial variable (2 as shown in Section 4.

The damage model coupled with plasticity is developed in the next section.

2.3. Coupled elastoplastic damage model
Local stresses for a damaged material are redistributed to the undamaged microbounds

so that the stresses effectively acting on the undamaged material turn out to be higher than
the nominal stresses. Hence it appears reasonable to assume that the plastic flows occur
only in the undamaged part of the material by means of effective stresses a= M(J and static
internal variables X= MX.

Let us denote by fj the effective stress given by:

fj = (8, X) = M(a, X) = Ma.

The yield criterion defines the current yield surface in terms of the effective stresses.
Accordingly a convex yield functional!: ,cr"~ 9t u {+ ex} is introduced so that the elastic
domain t is provided in terms of the effective stresses fj as follows:

Remark 2.4. The presence of the effective stress fj in the definition of the elastic domain
has the effect of lowering the limit plastic strength of the material. •

2.3.1. The normality rule. Assuming a standard behaviour, the plastic flow Pbelongs
to the normal cone to the elastic domain t at the point fj :

, M (~) l· (~) ~ ~D' (.)pEiV( (1 = cU( (1 <=> (1EC p p,

where 15" is the support functional of the elastic domain expressed in terms of the effective
stresses:

The value of 15p (p) represents the plastic dissipation associated with the flow p; the equality
above yields the principle of the maximum plastic dissipation in the effective stress space.

As in the plastic case, the dissipation 15" turns out to be nonnegative if the null stress
belongs to the interior of t.

The associative flow rule above for the coupled elastoplastic damage model is for
mulated in terms of effective stresses; actually it can be equivalently stated in terms of
actual stresses a.

In fact we preliminarily note that the yield functional can be written in terms of (1 by
virtue of the following equalities:

j(fj) = .!(M(1) = (j M)((1) = /«(1),

since the effective stress fj is related to the actual stress (1 by means of the relation fj = M(1.
Accordingly, effective stresses fj which belong to the effective elastic domain t are such

that the related actual stresses (1 belong to the elastic domain C.
Hence, the normal cone (or equivalently the subdifferential of the indicator) to the

elastic domain t at a point fj becomes:
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where the second chain rule and the equality between the normal cone and the subdifferential
of Cat G, reported in Appendix A, have been invoked.

The term (M- 1
)' = 1-<5 1 turns out to be positive so that the cone NdG) does not

change if it is multiplied for (1-<5 1), i.e., (1-<5])NcCG) = NdG). Hence, the flow rule for
the elastoplastic damage behaviour can be written in terms of the actual stresses as follows:

Note that this coupled elastoplastic damage model has two dissipation criteria, one
for the elastoplastic and the other for the damage behaviour which are expressed by means
of the two functionals Dp and D".

2.4. The free energy
The Clausius-Duhem inequality can impose conditions on the forms of the constitutive

relations for the material of which the body is composed. Following the rules of the
thermodynamic of irreversible processes, the forces associated with the kinematic variables
can be determined by using the well-known strategy of Coleman and Noll (1963).

In purely mechanical theory, as the one considered in this paper, no internal heat
generation sources and heat fluxes are considered. Accordingly the explicit recourse to the
thermodynamic of irreversible processes can be avoided in developing the constitutive
model.

The static variables can be provided in terms of the derivatives of the free energy with
respect to the related dual variables. In particular, stresses (J and static internal variables X
can be obtained by deriving the free energy with respect to the elastic strains I' and kinematic
internal variables 'l... Analogously the static damage variables (~I' ~z) are obtained by
deriving the free energy with respect to the pair of kinematic variables (<5], <5z).

Further, the plastic and damage dissipations D" and D" turn out to be nonnegative by
assuming that the null stress G and the null damage static internal variable ~ belong,
respectively, to the interior of the convex domains C and G at the beginning of the load
history. Thus the second law of the thermodynamics is fulfilled.

Let l/J: q; I-> 91 u {+x} be the convex elastic energy and n: X I-> 91 u {+ x} be a
convex functional which accounts for the hardening phenomena.

The elastic energy l/J. the hardening functional n and the damage variable <5 1 are
collected in the functional k : 91 x 9' X XI-> 91 (where ~R = { - ex} u 91 u {+ ex}) in such a
way that it turns out to be convex in (e. 'l..) and concave in <5 1, Moreover, we consider a
positive definite damage operator A : Yzl-> Y~.

The free energy <D: Y" x 9" I-> 91 is then the saddle (concave-convex) functional given
by:

In particular, the free energy <D turns out to be convex in e = (e, IX) and concave in;; = (<5 1, <5 2),

Remark 2.5. In most of the elastoplastic ductile damage models see, e.g., Simo and Ju
(1987), Lemaitre and Chaboche (1990), Hansen and Schreyer (1994), the damage variable
<5] is associated only with the elastic strain energy l/J. Experimental evidences show, on the
contrary, that plasticity gives a significant contribution to the initiation and growth of
microcracks. Accordingly, to couple plasticity and damage, the following expression for
the saddle functional k is assumed:
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if6 1 El

otherwise

where 1 = [0.6 e] and t/J is the elastic energy for the undamaged material. •
The form of the free energy assumes an additive decomposition into a stored elastic

and hardening energy term multiplied for a damaging variable and a quadratic form related
to the anisotropic change of the damage domain. This formulation is used by others because
it is still fairly general to encompass many constitutive models but not so abstract that the
computational algorithm becomes overly complicated.

The constitutive relations can thus be obtained by deriving the free energy:

(~. G) = d<D(t5. e).

or equivalently:

(J = (I - (i ddt/J(e)

X = (I - (i l )dn(:x)

~I - -[t/J(e)+n(:x)]

~2 - -A6 2

if 6[ belongs to the set 1.

Remark 2.6. The static internal variable ~I' conjugate with the kinematic variable <>1'
coincides with the opposite of the sum of the elastic free energy l/J and the hardening
functional n. Hence plasticity and damage are directly coupled. •

The expressions of the constitutive potentials are left purposely unspecified. Accord
ingly the solution algorithm can be developed in a general form which can be applied to a
wide class of elastoplastic damage theories by suitably specifying the potentials for the
problem at hand. The specialization of the proposed algorithm to the one developed by Ju
(1989) is provided at the end of Section 3.

It is worth noting that most of the damage theories have phenomenological origin and
are based either on the principle of equiralenf strains (Lemaitre and Chaboche, 1990) or on
the principle of equiralenf elasfie energy (Cordebois and Sidoroff. 1979).

On the contrary. neither the principle of equivalent strains nor the principle of equi
valent elastic energy are explicitly imposed at the very beginning of this model as an
additional hypothesis.

Remark 2.7. The expression of the stress (J derived from the previously defined free
energy <D coincides with the stress obtained by postulating the principle of the equivalent
strains.

In fact the undamaged elastic energy for a linear clastic behaviour is given by the
quadratic form t/J(e) = I 2<E"e, e) so that the actual stress (J turns out to be:

where E = (I - (i l )Eo is the damaged elastic stiffness.
Hence the assumed form of the free energy provides the expressions of the stress (J and

of the damaged elastic stiffness E which coincide with the relevant ones derived from the
principle of the equivalent strains. •

Remark 2.8. Assuming a different expression of the saddle functional k. we can provide
a model in which the damage elastic stiffness E coincides with the one derived according to
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thc principle of the equivalent elastic energy. Accordingly the following expression k has
to be considered:

if6 1 EJ

otherwise.

Provided that the elastic energy ljJ and the hardening potential T1 are nonnegative, the
functional k is convex in (6\,1.', ex).

For a linear elastic behaviour. if 6) E J, the actual stress (J turns out to be:

where E = (I - 6))2Eo is the damaged elastic stiffness.
It is then immediate to prove that the elastic energy expressed in terms of the effective

stress fJ and of the undamaged elastic stiffness Eo coincides with the elastic energy expressed
in terms of the actual stress (J and of the damaged elastic stiffness E (principle of the
equivalent elastic energy),

Further. in this case, the static internal variable ~ 1 is given by:

and the damage variable ~ I depends on the kinematic internal variable 61, the elastic free
energy ljJ and the hardening functional T1. •

For sake of clearness we report hereafter both the principles of the equivalence of the
strain and of the elastic energy.

2.4.1. Principle olequiwlent strains. The principle of the equivalent strains was intro
duced by Lemaitre, see Lemaitre and Chaboche (1990). This principle states that the strain
associated with a damaged state under the applied stress is equivalent to the strain associated
with its undamaged state under the effective stress.

In essence, it requires that the effective material behaviour is represented in the effective
stress space and in the actual-strain space. Accordingly, the expressions of fJ in terms of I.'

and of the damage elastic operator E are:

6 = EoI.' E= M-IE"

where Eo denotes the elastic operator in the undamaged state.
For the isotropic damage model the damage elastic operator is :

2.4.2. Principle ole(juivalent elastic energy. The principle of equivalent elastic energy
was introduced by Cordebois and Sidoroff (1979) and states that the complementary elastic
energy of the damaged material is the same as that of an undamaged material except that
the stress is replaced by the effective stress.

The complementary elastic energy !.fJ* can then be written as follows:

*( ) _ 1<' E I '> _1< E I >!.fJ (J - ~ (J, 0 (J - 2 a, a.

Hence, recalling that fJ = Al(J, the expression of the damage elastic operator E is :

E = M I E,)vl'

and, in the scalar case, it becomes:
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Note that the effective stress derived according to the principle of equivalent strains
turns out to be higher than the relevant effective stress derived from the principle of
equivalent elastic energy (Hansen and Schreyer, 1994).

3. VARIATIONAL PRINCIPLES

The evolutive constitutive model is reported in the following box:

£=e+p

pENdO")

~ENG(~)

0" = de<D(o,e)

~ = do<D(o, e)

additivity of strains

plastic flow rule

damage flow rule

elastic relation

damage relation

Box I. The evolutive constitutive model

The evolutive analysis of a non-linear elastoplastic constitutive problem with damage
can be performed by solving a sequence of problems in which the strain increment is applied
and updating the state variables at the end of each increment (Simo et al., 1989, Reddy and
Martin, 1991).

Attention is focused on a single step of the procedure for which the strain increment
is given. Accordingly we need to evaluate the finite increments of the unknown variables
corresponding to the increment of strain when their values are assigned at the beginning of
the step. Let (")" denote the known quantities (.) as the beginning of each step.

Adopting a fully implicit time integration scheme (Euler backward difference), the
finite-step formulation of the elastoplastic constitutive model with damage is achieved by
enforcing the relations of the model. The plastic and damage flow rules are enforced at the
end of the step in the form:

where the time derivative pand ~ have been replaced by the relevant finite increment ratios
and the time increment has been neglected being Nc and NG convex cones.

In view of the variational formulation of the constitutive model. the plastic flow rule
is more conveniently expressed in terms of the dissipation Dp in the form:

Hence the finite-step constitutive model with damage and plasticity is summarized in
the next box:

£=e+p

0" E cDp(p - p,,)

oE "" +CUGW
0" = de<D(0, e)

~ = do<D(o, e)

additivity of strains

plastic rule

damage rule

elastic relation

damage relation

Box 2. The finite-step constitutive model

To derive the variational formulations for the elastoplastic constitutive model above
the related operator form has to be built up. Defining the product space 2. = Y'a
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x fl" X f0a x Ya X Y~ and its dual !1' = f0a x Y'o x Y'a x Y~ x Ya, the operator form of the
constitutive problem, for a given total strain e, is:

OEA(q)+q

where q, qE f2 and A : !1 f---+!1' is the multivalued constitutive operator. Explicitly it is written
as follows:

0 0 -I.
vil

0 -1c; 0 G e-po

0 - 1.'1"" aDp 0 0 0 P-Pn 0

0 E 0 0 dlD -If;, 15 + 0

0 -1.'1'" 0 0 e 0

0 0 0 -ly" 0 cUe; ~ 15"

The conservativity of A can be proved by noting that A is built up by a linear symmetric
and hence conservative operator, by the derivative dcD, by the multi-valued operators aDp

and aUG which are conservative according to the integral theorem presented in Romano et
al. (l993d). The potentials of aDp and aUG are given by Dp and UG' respectively.

The potential of the multivalued finite-step constitutive model of box 2 can be given
by a direct integration of A along a straight line in the space !2 and turns out to be:

which is convex in (e, P, ~), concave in 15 and linear in G. The potential L assumes finite
values if the damage variable 15 belongs to the set V = [0,6,] X Y2.

Hence it is:

Proposition I. For a given e, a vector (G, P, 15, e,~) is a solution of the elastoplastic
damage constitutive model reported in box 2 if and only if it is a saddle point of the
potential L 0

From the computational standpoint it is useful to derive a variational principle in
(G, b) since it provides the variational basis to perform the elasto-plastic-damage return
mapping.

3.1. The rariational principle in (G, p, b,~)
Let us first derive an intermediate potential in the four state variables (G, p, 15, ~). The

starting point is the potential L in which the elastic strain e has to be eliminated from the
set of independent state variables.

To this end the elastic relation:

G = d"cD(t5, e)

must be written in terms of a unique relation involving the free energy cD, its associated
convex functional 2: Yo x Y'af---+ 9\ u { + ::xJ} and the virtual work between the dual variables
(e, G).

The equivalence (ii) reported in the box A.2 of Appendix B involving the partial
subdifferential of a saddle functional can thus be rewritten in terms of cD and 2 as follows:

for any 6, EJ.
Substituting the equality above in the expression of the potential L it results:
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which is concave in the pair (u,«5) and convex in (p,~).

Accordingly it can be stated:

Proposition 2. For a given e, a vector (u, p, «5,~) is a solution of the elastoplastic damage
constitutive model reported in the box 2 if and only if it is a saddle point of the potential
I\. D

To explicitly prove that the stationary condition of the saddle functional II yields back
the constitutive model reported in box 2, let us assume that a quartet (u, p, «5,~) be a
stationary point of II, i.e.,

(0,0,0,0) E cI \ (u, p, «5, ~).

The stationary condition above can then be rewritten as follows:

Hence, there exists an elastic strain e = e - p such that:

(-~.e) = d='(<<5.u).

This condition is equivalent to the elastic and damage relations in terms of the free energy
<I>; in fact the equivalence between the relations (a) and (c) of the box A.I in the Appendix
B allows us to write:

(-~. e) = d='(<<5. u) <0;> (~. u) = d<I>(<<5. e).

Further. the stationary condition with respect to the pair (p,~) yields the plastic flow
rule. expressed in terms of the plastic dissipation DI" and the damage flow rule.

The converse implication follows by reverting the steps above.

Remark 3.9. The expression of the jointly convex functional =. associated with the
saddle free energy <I> can be derived in accordance with the results established in Appendix
B.

Then the functional =. is given by (see Appendix C for the proof) :

='(<<5.u) = sup [-<u.e:>--<I>(<<5.e)]
e

+:x otherwise

•
Remark 3.10. The derivative of =. with respect to «5 and u can now be explicitly

performed in order to obtain the relation between the pairs of state variables ( -~, e) and
(<<5. u).

The derivative of =. with respect to 6\. if ()\ E J. is:
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d')1
2 (6 1 ,6 2 ,a,;() = -l~*C~6J+n*C~~)J

+(1-6]) l(d"l 1~6]' #* C~6J )+( dOl 1~61' dn* C-~6J)J
= -l~* C~6J+n*C~6JJ+C~6]' d~* C~6-J)+(I!b-

j
' dn* C~6~) ).

Note that the symbol d without any subscript means the derivative with respect to the
argument of the functional which it is applied to.

At this point the constitutive model derived in Section 2.4 shows that the elastic energy
~ and the hardening functional n link together the pairs [c, a; (I - 6])} and {::c Xl (1 - 6d }.
Hence, the following Fenchel's equivalences hold:

which yields the Fenchel's equalities:

( a) /a \
~(c)+~* T-6' = \.1-(5 ,c )

] . ] /

so that the expression of d')12 becomes:

The derivative of 2 with respect to 6> if 61 E J, is:

and the derivatives of 2 with respect to a and X, if 6] E J, are:

Hence it results:

[
-(.]

-(2

C

X

ljJ(e) +n(x)

A6,

and the constitutive relations of the elastoplastic model with damage are recovered. •

3.2. The mriational principle in (0', (j,~)

In order to derive from the potential 1:] the saddle potential 1:2 which depends on the
state variables (0', (j, ~), it is necessary to enforce the plastic flow rule in terms of Fenchers
equality:
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Substituting the equality at the right hand side above in the expression of the potential
L 1, we have the following:

Proposition 3. For a given e, a vector ("., t5,~) is a solution of the following saddle
problem

min max L("., t5,~)
~ (rr ,1)1 -

with:

if and only if it is a solution of the elastoplastic damage constitutive model reported in box
2. []

The constitutive model associated with a saddle point of the potential L 2 can be
obtained by enforcing the condition:

[Ol [-~ lE -d=.(t5,,,.)+° -t'Uc(".)-po+e

Explicitly it can be written:

~ = -d"=.(t5,,,.)

c; - Po - du =.(t5,,,.) E c' uc("')

15-150 E?L c;(~).

The relations above show that the static damage internal variable ~ can be dropped
from the constitutive model by substituting the argument of the indicator of G with the
expression of ~ provided by the first relation.

The related variational formulation can be derived starting from the potential L 2 and
is shown hereafter.

3.3. The rariational principle in ("., (5)

The static damage internal variable can be eliminated from the set of independent
variables by assuming that the static damage internal variable ~ and the increment of the
kinematic damage internal variable 15 - 15" fulfils the damage relation:

Introducing the r.h.s. of the equivalence above in the expression of the potential L 2 we
have the following:

Proposition 4. For a given e, a vector ("., (5) is a solution of the following concave
problem

max L 1 ( "., (5)
(rr,()' .

with:
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if and only if it is a solution of the elastoplastic damage constitutive model reported in
box 2. 0

Remark 3.11. The functional L 1 is the generalization to the elastoplastic damage
constitutive model of the finite-step counterpart of the Prager-Hodge principle limited to
its constitutive part (Koiter, 1960). In fact in the absence of damage it turns out to be:

where <I>~O") = 3(0,0") = l/t*(0") +n*(x).
Moreover, assuming an elastic behaviour. no internal variables are necessary so that

it results:

which is the well-known complementary elastic potential limited to the constitutive model.

•The constitutive model associated with a maximum point of the potential L, can be
obtained by enforcing the stationarity condition:

- [OJ [-i'DAlJ-lJJ J(0,0) ECL,(lJ,O") <:;> ° = -d3(lJ,0")+ ""
-( Lc(O")-p,,+e

and explicitly it becomes:

{
e- Po= d,,3(lJ.:) E (c U (~O")

- d,)::.(lJ, 0") E cDd(lJ - 0..)

Box 3. Constitutive relations associated with the potential I,

The former relation of the box 3 above shows that there exists an elastic strain:

such that the plastic strain p = e - e fulfils the discrete counterpart of the plastic flow rule:

P-PoEr'UC(O")'

The latter condition of the box 3 provides the static damage internal variable ~ :

): = [~IJ = -d ';:;'(lJ )" = [-l/t(e)-n(iX)J
.. F ,)~ ,0" _ 4 ~

~ ~ .. u~

such that the discrete counterpart of the flow rule is fulfilled:

4. SOLUTIO[\; OF THE ELASTOPLASTIC DAMAGE MODEL

The result established in the proposition 4 provides the variational basis to exploit
the elastic predictor-plastic corrector-damage corrector for the numerical solution of the
elastoplastic damage finite-step problem. The algorithm presented hereafter turns out to be
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a generalization of the one proposed by Simo and Ju (1987), Ju (1989) and is consistently
derived from a variational principle.

The solution of the incremental model of box 2 for a given history of strain I:: over a
sequence of time steps [l", l,,+ d amounts to updating the state variables in a fashion which
is consistent with the constitutive model once the state variables are known at the beginning
of the step.

Let us consider the time step [If/' l,,+ d and let ~I::"-l = I::f/+] -I::" be the given increment
of the total strain.

A maximum point (0,0') of the potential L J is a solution of the constitutive model
reported in box 2 and can be found as follows.

The functional L J is first maximized with respect to 0' under the assumption that the
kinematic damage internal variable 0 is held constant to its initial value Ow

The relevant stationary condition of L, then yields the former relation of box 3 which
can be rewritten as follows:

[
f:f/+,-Pf/-dl/J*(o')l ' .(')

d
* . E ( .Jc 0' .

'l." - n (Xl

where the normality rule of ~P with respect to the domain C has been substituted with the
equivalent expression in terms of the effective domain C.

Hence the minimization of LJ with respect to 0' amounts to finding a stress if,,_] so
that there exists an elastic strain:

e = [di/t*(o',,+ I)l
f/_ I dn*(;~n _ I )

such that the incremental plastic strain Pf/- 1- Pf/ = 1::,,+ 1-P,,- e,,+ I fulfils the discrete flow
rule:

Remark 4.12. By virtue of the expression of the free energy and. hence, of the convex
functional:=: reported in Remark 3.9, the stationary condition of LJ with respect to 0' for a
given increment ~I::" _ I of the total strain is thus equivalent to solve an elastoplastic problem
in the effective stresses and in the actual strain. •

The next step consists in evaluating the stationarity of the potential LJ with respect to
the kinematic damage internal variable 0 assuming if = if,,_ I. The stationary condition
yields the latter relation of box 3 :

The maximization of LJ with respect to 0 amounts to finding a static damage internal
variable ~,,_ I :

~ = [-i/t(i'f/;ll-n(X,,+I)l
f/-I -A()2.n+1

and a kinematic internal variable (j,,+ 1 such that the discrete damage flow rule is fulfilled:

Remark 4.13. For a given stress if,,_ I_ the maximization condition of LJ with respect
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to 0 is equivalent to solve a damage problem in which the elastoplastic part of the model is
.li·ozen. •

Remark 4.14. The use of the variational principle involving the variables 15 and (f

provides two equations which can be solved in sequence. Although plasticity and damage
are coupled, no alternate fulfilment of the two relations is needed to solve the elastoplastic
model with damage. •

In fact the strain e,,+ I = (e,,+ I' Y,,+ I) derived from the elastoplastic problem with the dam
age variables frozen yields the value of the damage variable ~ 1.,,+ I = - t/!(e" +I) - n(Yn T I)'

If ~,,_ I." = (~ I." _ I' ~ 2,,) belongs to the interior of G, the subdifferential of the indicator
of the domain G at the point ~,,+ I.., is zero and hence:

that is the damage variables ~2 and 15 do not change.
On the other hand, if ~,,+ I." does not belong to the interior of G. the new damage

internal variables 15"_1 = (61." t 1,62,,,+2) and ~2"'1 are evaluated according to the
expressions:

{

c) - () - II dq (- " )15 _ ~ 'V (;;; ) ¢> I.n - I I." - t . I '-.- I." - I
1/-1 (JI/El (; ~1I+1 - ~ d ~

02.,,+1-C>2.,,= -p g2(':;2.,,-I)

under the loading/unloading damage conditions:

Consequently, the updated actual stress is given by:

(J,,_I =(I-()I.i1TI)d,,_1

4.1. Solution algorithm
The solution algorithm for the resolution of the elastoplastic model with damage

derives from the results presented in the previous sections. In facL the solution scheme
consists of the following steps:

(i) Strain update. Given the incremental strain ~t". I go to the next step.
(ii) Elastoplastic problem. The damage variables 15 and ~ are fixed to their initial

values 0" and ~"and the elastoplastic problem for a given increment of the total strain ~t,,_ 1

is solved in terms of the effective stresses.

If the material is not damaged this step is similar to a classical strain driven elastoplastic
problem and the elastic predictor-plastic corrector algorithm can be adopted. In the case
of an elastoplastic behaviour see Simo and Taylor (1985), Simo et al. (1988, 1989), Lubliner
(1990), Crisfield (1991), Reddy and Martin (1991), Auricchio et al. (1992). Note that the
elastic-predictor. plastic-corrector algorithm can be obtained starting from the variational
principle which derives from the potential I,I reported in Marotti de Sciarra (1994).

In the present elastoplastic damage context the elastic predictor-plastic corrector algo
rithm is performed in terms of the effective stresses and the essential steps are reported
hereafter:

(a) Elastic trial stress. The trial stress f1,~_ I is evaluated assuming that the behaviour of the
body is elastic:
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where 8n is the effective stress at the beginning of the step.
The plastic strain and the damage variables are kept unchanged. Then go to the next

step.
(b) Plastic check. The plastic condition is first checked. If1(8:+ I) ~ 0 then the behaviour
is elastic and no plastic return is necessary. In the other case, that is/(8:+ I) > 0, go to the
next step.
(c) Plastic return mapping. The plastic return consists in projecting the trial stress 8:+ I

onto the elastic domain in order to obtain the updated strains e n + I, Pn+ I and stress 8n + I

which fulfil the elastoplastic problem.

The step (ii) provides the solution of the former relation of box 3, that is the solution
of the elastoplastic model for the given increment of the total strain ~£n+ I with frozen
damage variables.

Once this problem is solved we have the following set of state variables
[8nT I.en + I, p,,+ d and the static damage variable ~I"+ I since it results:

(iii) Damage corrector. If ~n-I." =(~I"t I'~:") does not belong to the interior of G, the
increment of the damage parameter ~II = 1/" t I -1/" in the time step [tn, tn-I] has to be
evaluated.

The increment ~II = 1/,,+ I - II" is given by the condition:

where ~ I is fixed.
The increment of the damage parameter can be obtained by directly solving the

condition:

or by a Newton-Raphson scheme:

Accordingly the updated value of the kinematic damage variable 61 ,,+ I is given by:

and the damage updated threshold (2,,- I is:

Finally the updated actual stress (J is obtained:

(J = ( I - () I" + I ) ci.

4.2. Speciali::atioll of the algorithm
No iteration are required for the damage part of the problem if the damage threshold

function g2 is the identity function g2(~J = ~2 or an exponential function such as
gJ~2) = lm('~' where (2 is a scalar variable.

Assume that the damage threshold has the expression g((2) = r,. The operator A
becomes a scalar parameter and the increment of the damage multiplier ~I/ can be directly
obtained by means of the formula:
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The updated value of the kinematic damage variable 01.'1+ 1 is then given by:

The updated value of the static damage internal variable ~2.n+ 1 is given by:

1781

and turns out to be equal to the value of the damage mode gl at the updated value of the
damage energy release rate due to the peculiar expression of the damage threshold. The
updated values of the stress can thus be derived from the formula (J = (I - 61.n~ 1)8".

Moreover, setting A = 1, the above expressions coincide with the one reported in the
computational algorithm for the elastoplastic damage model presented in Ju (1989).

Let us now assume that the force ~2 conjugate to the damage evolution is a tensor and
let the damage threshold be expressed in the form g2( ~2) = II ~21 .

The scalar product between tensors is denoted by the symbol "." and is defined as
A' B = tr(AIB) where "tr" represents the trace operator and Al is the transpose of A. The
norm of a tensor is denoted by Ii ell.

The damage multiplier Dofl is now obtained from a Newton-Raphson scheme and the
updated value Dofln+ 1 is provided by the formula:

Dofln+ 1
9 1 ( - ~ In ~ 1 ) - II S2'1 i

C' Ac,
~.~

The updated values of 01.'1.1 and ~2n+ 1 are accordingly obtained and are given by:

and

S2,n+ I

The damage condition g(~ln+I'~2n+1) = 0 is checked and if it is not fulfilled we set
n = n+ I, a new value of Dofln+ 1 is computed and the iteration is repeated. If the damage
condition is fulfilled the updated actual stress (J is then evaluated.

5. ELASTOPLASTIC DAMAGE TANGENT OPERATOR

The expression of the tangent elastoplastic modulus consistent with the Euler backward
scheme (Ortiz and Simo. 1986) has been obtained for a general elastoplastic model with
hardening in Marotti de Sciarra and Rosati (1995).

In this section the expression of the tangent modulus for the damage elastoplastic
model is derived.

The elastic trial of the elastoplastic algorithm is performed in the effective stress space
so that it appears reasonable to derive a tangent elastoplastic modulus in the effective stress
space and in the actual strain space.

Hence we first set 'fI(e) = ljJ(e) + n(:x). To obtain the derivative of the effective stress
with respect to the total strain we evaluate the derivative of the effective stress iJ with respect
to the parameter time and invoke the additivity of the strains:
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The expression of the discrete flow rule yields the relation:

so that:

dii = (P 'P (eHdr, - di. d!( ii) - i. d2
/( ii) dii).

Denoting by J the identity operator in the stress space (f", the expression above
becomes:

dii = [J +i. (P'P(e) (Pf(ii)J 1 (P'P(e)[dr,-di.df(&))

= [d2 'P(e) 1(,1 + i. (P 'P(e) (P/(&))J - I [dr, - d". d/(ii)J

= P[dr,-di.d/(&)),

where:

The operator P turns out to be symmetric and positive definite and hence invertible.
Actually, it is the sum of the tangent elastic compliance d2'P(e) -I, which is symmetric and
positive definite, and of the symmetric and positive semidefinite operator d 2f(&).

The plastic parameter i. can be derived by enforcing the Prager's consistency condition
for plasticity which yields the condition:

-<d!(ii), d&>- = -<d/(&), P[dr, - di. d/(&));>- = 0,

so that the differential of the plastic multiplier is given by:

where the parameter fJ is:

f3 = -<d/(&), Pd/(ii);>-.

The algorithmic tangent elastoplastic modulus can thus be obtained by substituting
the relation above in the expression of dO' :

dO' = P[dr, - P 1 -<dt(ii), P dr,;>- (tf(&))

= [Pdr,-fj l-<dt(&),Pdr,;>-P4t(ii))

= [P- fJ I (P dl(&)) @(Pdj(ii))) dr"

where the symbol @ denotes the tensorial product.
Setting N = P dj(ii). the expression of the tangent elastoplastic modulus consistent

with the Euler backward time integration scheme becomes:

D'P = P - fJ IN @ N

The symmetry of D'I' is apparent.
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6. APPLICATIONS

The ductile damage model developed in this paper allows us to compare the behaviour
of an elastoplastic material with hardening when different expressions of the damage
domain are provided. For now, assume that the material data are correct for a representative
volume element.

A one-dimensional model is considered. The elastic domain C is given by:

where X, accounts for the kinematic hardening behaviour and X2 is the static internal
variable associated with the isotropic hardening.

The damage domain G has five different shapes according to the following five different
expressions of the damage function y, and damage threshold function Y2:

case la Y, (~,) = Ie, I Y2(~2) = '-;;:

Ib Y, (~l)
, ,>

Y,(e,)case = ,~ , = S2

case 2a g,(~Jl = I " I g, (~2) = '::;11I

I~ 1 ':-2
111

2b gd~, )
I d'

9, (~,)
':;111case = :;-=1 = ~2

111

case 3 9, (~, ) = I¢, I 92 (~2) = I ~, ,I.

Note that in the functional form 3. the variable ~2 is a square two by two matrix.
The elastic energy lj; and the hardening potential IT are given by:

where (5, is the initial yield threshold. H kill and HI''' are the kinematic and isotropic moduli.
Accordingly, the free energy <D is then written in the form:

if (), E [0, 6J The last term above is a scalar product in the case 3 since ()2 is a square matrix:
in all the other four cases (52 is a scalar variable.

The set of parameters adopted in the present application is deduced from Hansen and
Schreyer (1994) for a 2024-T3 aluminum alloy at a room temperature and is listed hereafter:
undamaged elastic modulus E" = 74500 MPa. initial yield strength (5, = 250 MPa. linear
isotropic hardening modulus H"" = 200 MPa. isotropic hardening exponent m = 0.4. linear
kinematic hardening modulus H kill = 0 MPa. damage threshold (11 = 1.9 MPa and linear
damage parameter A = 15 MPa.

A monotonically increasing strain f; = 0.6* 10 't2
' from 0 to 3. 79* 10- 2 is considered

and the strain increment is assumed to be 0.246* 10-' (154 strain steps). In Fig. 2 the stress
strain relations for the expressions I = case 2b. 2 = case 1b. 3 = case 2a and 4 = case Ia
of the damage domain are reported.

In Fig. 3 the evolution of the clastic modulus in terms of the axial strain is sketched.
Each of the four curves in the Figs 2 and 3 is obtained by assuming a different expression
of the damage functional g, and damage threshold .'12- It is possible to note that the
maximum strain corresponding to the complete damage. i.e., () = 1. is quite different for
the different expression of G and that the condition 6 = I is achieved before the strain path
is completed.

In Fig. 4 it is reported the evolution of the elastic domain and of the damage domain
(amplified by the factor 10) in terms of the axial strain when the case la is considered.
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Fig. 2. The stress-strain relations: I = case 2b: 2 = case Ib: 3 = case 2a: 4 = case la.

E
1---------lIlI:::'"'"-~-_

70000

60000

50000

40000

30000

20000

10000

0.005 0.01
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Fig. 5. The stress-strain relations when the damage parameter changes for the case Ia.
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Fig. 6. Stress-strain relation for a cyclic strain history with A = 15 MPa.

In Fig. 5 the stress-strain relations are pictured when the damage parameter A changes
in the set {IS. 20. 30. 45} and the damage domain is expressed by means of the functions
reported in the case Ia).

If A = {IS. 20}. the figure shows that the complete damage. i.e .. b = I. is achieved
before the maximum strain is reached. If the damage parameter increases A = {30. 45} the
stress-strain curve is more rigid and the maximum strain is reached.

Let us now consider a cyclic strain history F. = 0.6* 10- 2 sin t where t ranges from 0 to
5][.

In Figs 6. 7 and 8 the stress-strain relations are reported when the damage parameter
A varies in the set [15.30.45}. The isotropic modulus H"" is now set equal to 600 MPa and
the damage domain is that of the case Ia.
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Fig.. 7. Stress-strain relation for a cyclic stram history with A = 30 MPa

(J

O. 06 E

Fig.. 8. Stress-strain relation for a cyclic stram history with A = 45 MPa.

Moreover, the correlation between the elastic damaged modulus and the axial strain
is shown in Fig. 9.

In Figs 10. II and 12 the stress-strain relations for the abovementioned cyclic strain
are reported when the hardening parameter Hk,,, changes in the set {400, 800, 1200},
Hi,,, = 600 MPa, A = 15 MPa and the damage domain is that of the case la. The evolution
of the elastic and damage domain and the correlation between the elastic damaged modulus
and the axial strain are reported in Figs 13 and 14.

The stress-strain relations for the functional form 3 of the damage domain G are
reported in Figs 15 and 16. The kinematic hardening parameter H ki" is 1200 MPa, the
isotropic hardening modulus H,,,, is 800 MPa. The damage parameter A is 7 MPa in the
former figure and 15 MPa in the latter one. The degradation of the elastic modulus vs
strains is painted in the Figs 17 and 18.
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Fig. 9. The damage elastic modulus vs strains for a cyclic strain hIstory with A = 45 MPa.
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Fig. 10. Stress-strain relation for a cyclic strain history with II"" = 400 MPa.
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Fig. 11. Stress-strain relation for a cyclic strain history with H,,,, = 800 MPa.

O. 06 e

Fig. 12. Stress-strain relation for a cyclic strain history with H"" = 1200 MPa.
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fig. 13. The evolution of the damage and elastic domain for case Ja and H"" = 12DD MPa.
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Fig. 14. The damage elastic modulus vs strain for H,,,, = 1200 MPa.
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Fig. 15. Stress-strain relation for a cyclic strain histof\ with H"" = 1200 MPa, Hi,,, = 800 MPa,
A = 7 MPa and case 3 of damage domain.

Fig. 16. Stress-strain relation for a cyclic strain history with H"" = 1200 MPa. H,,,. = 800 MPa.
A = 15 MPa and case 3 of damage domain.
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Fig. 17. The damage elastic modulus \"s strain related to the stress-strain diagram for Fig. 15.
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Fig. IX. The damage elastic modulus vs strain related to the stress-strain diagram for Fig. 16.
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7. COI"CLUSION

An energy based continuous model coupling plasticity and damage has been presented.
The model can exhibit a damage threshold governed by a scalar or tensorial variable ~2'

The treatment presented in this paper provides a unified framework to encompass
constitutive elastoplastic models with hardening and damage phenomena.

The yield and damage functionals are assumed to be convex and the damage threshold
has been chosen to be monotone, nonnegative and concave thus generalizing previous
formulations.

The convexity of the damage and elastic domains led to the definition of the damage
and plastic dissipation which turn out to be nonnegative provided that the origin of the
space belongs to the interior of the relevant convex domain.

The free energy is given in a form such that the damage force associated with the
elastoplastic microcrack evolution turns out to be the opposite of the sum of the elastic
strain energy and hardening functional. The principle of equivalent strain naturally follows
from the assumed form of the free energy.

The expression of the elastoplastic damage tangent modulus consistent with the Euler
backward scheme is provided following a general procedure.

The elastoplastic damage model with hardening is then cast in a consistent variational
framework and the general variational principle is provided.

Different variational formulations in a reduced number of state variables are derived.
The variational principle in (j and (1 provides the consistent variational basis to solve the
elastoplastic damage problem in a straightforward manner.

The elastic predictor-plastic corrector followed by the solution of the damage problem
has been implemented for different expressions of the damage mode and damage threshold.
The results have been compared for a monotonically increasing strain history and for
different cyclic strain histories with different damage and hardening parameters.
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APPENDIX A-A BACKGROUND OF CONVEX A)JALYSIS

Some notations of convex analysis used in the paper are reported for sake of clearness; for more details see
Hiriart-Hurruty and Lemarechal (1993).

Let (X. X') be a pair of locally convex topologIcal vector spaces placed in separating duality by a bilinear
form C'). Let us set ~'ft = : - x: u:Jl u : + y~:.

Convex sets-A subset K of X is said to be convex if

i.x, + (I-i.)x. E K whenever .v, E K. r: E K. i E [0. I].

Convex cone-A set K contained in X is a cone if i.x E K for every i. ?: () and x E K. A convex cone is a cone which
is also a convex set.
Normal cone-The normal cone to a convex set K at a point v is defined as follows:

{0
:x, * E X' : <x* .1' - .v:> ~ ()

NJr) =
'iIEX:. iLv E K

otherwise.

Convex functional --A functional f: X c-> ~fl u:+ x: is convex if:

for any x, E domj. x: E domf and i E [0. I] where dom/denotes the domain off The functional lis strictly convex
if the inequality above is strict.
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Proper functional-A functionalf:X f-> ~ is proper if it is never - x; and/(x) < + ex for at least one x.
Sublinear functional-- A functional/: Xf-> ~ u : + x; : turns out to be sublinear if it is positively homogeneous
and subadditive :

{

f(xx) = exf(x)

/(x,)+f(x,) ;'/(.v, +.\J

'h ~ 0 (positive homogeneity)

Vx" X, EX (subadditivity).

Lower semicontinuous functional--A functionalj:X f-> :11 u : + x : is said to be lower semicontinuous if:

liminff(.::) = i(xl'i'::EX.
----0.\ - .

A lower semicontinuous functionaljhas a closed epigraph. i.e.Jis closed.
Young function-A Young function Y::II f-> :11 u : + J.: is an extended real·valued function on :11 which is
monotone, l.s.c., convex and nonnegative with Y(O) = O.
Conjugate functional - The conjugate of a convex functional t: Xf-> ~l u : + J.: is the convex functional
t* : X' f-> ~ U : + x..: defined by :

t*(X*) = suP: (X*I/ -A"): .
I'c.\

Note that/* is convex and closed: further if/is closed we havc f** = f
Indicator functional-- Given a set K contained in .t'. the indicator of K at a point XE X is defined as follows:

ifxEK

othcrwise

Support functional Given a set K contained in X. the support functional of K at a POint x* E X' is defined as
follows:

Dtx*) = sup <v*\)
\.}.:

l"ote that the support and the indicator functionals of a convex set K are conjugate.
Subdifferential- The subdifferential of a convex functional t: X ->:11 u : + J.:, having a nonempty domain, is the
set ?ftx) c:; X' such that:

In particular. if the functional/is differentiable at .VE X, the subditferential is a singleton and coincides with the
usual differential.

!'<ote that the subdifferential of the indicator functional of a convex set K at a point x E K coincides with the
normal cone to K at x:

Fenchers equality-Given two convex conjugate functional/and t*. the Fenchel's inequality holds:

f(l)+f*(.v*)~(X*.l) V"EX, VX*EX'

The elements :x..v*: for which Fenchers inequality holds as an equality are said to be conjugate and the following
relations are equivalent when (is closed:

((x) + t*(x*) = <X*I/. \* E acv). x E '~f*(x*).

Subdiffercntial rules--The following rules usually hold for subdilferentiability:

• Chain-rule. Given a monotone convex function 1Il::1l f-> :H u : + x;: and a continuous convex functional
/: X f-+ ~ U : +-x :' the functional (!Ill) is convex and its subdifferential at a point x E X, which is not a minimum
forI is given by (Romano, 1995):

• A second chain-rule. Given a differentiable operator A: Xe-.. Y and a continuous convex functional
/: Y f-+ ~ U : + x : which is subdilferentiable at I' = A(Xl we have:

"U Altxl = [dAtxl] iI[A(x)].

where dA (x) is the derivative of the operator A at x and IdA (.v)]' IS the dual operator.
• Additivity. Given two convex functionals f,: Xf->:H u : + x: and /,: Xf-+:Il u : + '/.: which are sub
differentiable at x EX. it turns out to be:
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ru, + f~ Hx) = ?I, (x) + (of~ (x).
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Analogous results hold for concave functionals by interchanging the role of ~cL. ~ and "sup" with those
of -cL. ,;; and "'inf"; the prefix "'sub" used in the convex case has now to be replaced by "super".

APPENDIX B--SADDLE FU;-';CTIONALS

We report here the main results concerning with the saddle functionals which have been used in the paper.
The proofs and a complete analysis of the subject can be found in Rockafellar (1970).

Given a function I:X x Y f--+ :R u : + Y"}. jointly convex in X and Y. its conjugate I* : X' x Y' f--+ ~Il u : + x :
is given by:

f*(x*. r*) = sup: (y*.y) + (r*. r) {(Y. r):.
11.1',

and turns out to be closed and convex in X' x Y·.
A saddle functional k: Xx Y' f--+ '.R(~l\ = : - x: u u : + x :. concave In X and convex in Y'. is said to bc fully

closed if both the concave and the convex closure of k coincide with k itself. that is:

[concave closure,
lconvex closure

cl,k(x.r*) = k(.I:.r*1

cl,k(x . ."*) = k(x. r*)
v'lx.r*IEXx Y'.

It can be proved that a fully closed saddle functional k: ,.Ii x }" f--+ ~It can be associated with a unique closcd
convex functionalf': X x Yf--+ ~Il u : + x : and with the conjugatef*: X' y Y' f--+ ~Il u : -"- y_: ofIas follows:

k(x.r*) = sup, :<r*.l)-f(x.r): k(.v . .'·*) = inr,.:(.\*.x)+f*(-x*.r*);

The former equality shows that k is the partial conjugate of the convex functionalf(.v.·j for a llxed.\ at the
point r*; the latter one shows that k coincidcs with the partial conjugate of the concave functional (~I*)('.r*)

for a given r' at the point (-x).

To explicitly prove that the functional k is saddle. we report the following:

Theorem A. I. The functional k : X x Y' f--+ ~It is concave In the space X and is convex in the space Y'.

Proof. The functional k turns out to be convex since it IS the clJnJugate of the convex functional fIX. ').
To prove that k(x.·) is concave. let us introduce the projector P, : X x Yf--+ X given by:

Defining. for any r* E Y'. the convex functional in the space .t· x Y:

h(x . .'·:.'·*) =/(x.r)-<,."*

the expression of k becomes:

Hence. a theorem of convex analysis (Rockafellar. 1970. theorem 163) allows us to rewrite thc "'inl" above
in the form:

k(x . .'·*) = -(V, h*)*(x:r*).

where V, is the dual of P,.
Being the functional (Vi 11*)* convex in x for any ."*. it follows that k(x.·J is concave. D

Conversely the functionals I and t* can be exprcsscd in tcrms of the saddle functional k according to the
following expressions:

flx.r) = sup :<r*.r)-k(x. .'·*);. -f*(-x'.r*) = il;f:<x*'x) k(x.r*):.
"

Analogous results hold for the concave functionals by interchanging the role of + x. ~ and "'sup" with those
of - x . ,;; and "'inf".

Hence let us now consider the closed concave functional (.- fl: X x Yf--+ ~ll u : - x: and its conjugate
I-f)* : X x }" f--+ ~ll u : - y_',. "iote that the relation between (-f)* and ( -I*) is given by :

-f*lx*.r*) =( -f)*( -x*. -r*).

A fully closed saddle functional k*: X' x Yf--+ ~It. concave in X· and convex in Y. is associated with the closed
concave functional (- f) and With its conjugate (-1)* as follows:
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k*(x*. 1) = inf.. \.
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. x) +/(X.\,):. k*(x*.\') = sup: (\"*.1) -I*( -x*.\'*))
"

The functionals (-fJ and (- /*) can be equivalently expressed in terms of k* in the form:

-f(.V.l") = i~f:(x*.x)-k*(x*.l): /*(- x*.r*) = sup :(l·*.l)-k*(x*.y)]

It is easy to prove that the conjugate saddle functionals k and k* are linked together by the equalities:

k*(X*.l·) = infsup :(x*.x)+(I·*.\)-k(.v.\'*): = supinfi(x*.x)+(\*.y)-k(:c\'*)J
, .,.* * \

so that the saddle functional k* is said to be the COlljuij(/le of the saddle functional k.
For sake of completeness we also report the expressions of k in terms of its conjugate:

k(.v. r) = sup if!f :(x*. x) - (1'*1) k*(X*I): = l~fsup :(x*. x) + (\'* \') -- k*(x*.\'):.
, '

Given any saddle functional k. we define by I ,k(v. \'*) the superdifferential of the concave functional k(·. y*)
at.v and by (,.k(x.\'*) the subdifferential of the convex functional k(x.·) at \'*

Note that the same symhol I is used to define hoth the subdifferential of a convex functional and the
superdifferential of a concave one.

The suhdifferential of the saddle functional k at the point (v. r*) is defined as follows:

It can he proved that given a closed convex functi,mal /. Its conjugate j* and the associated closed saddle
functionals k and k*. the following relations are equivalent:

al (v·*.\'*)E'rr(x.\') J
b) (V.l·) I" ,) *(X*I*)

c) (- x* 1) I" ,'k(x. \"*)

d) (v.\'*) E'lk*( - V*I')

Box A.I

The equivalence between c) and d) allows us to generalize Fenchers equality in the following form:

~E"\k(X.l*)=-I *(X*.I*I+k(v.\'*) = -(x*.x)

I ('11) \'E'I,.k(x.\'*)=I(x.r)+k(x.\'*) = (\'*\')

(iii) XE',',.k*(-x*.\')=-f(.V.l·)-+-k*(-x*.\'j = -(v*.x)

(iv) \·*E'I,k*(-x*r)=I*lx*.\'*) ~k*(-x*\') = (1·*.\,)

Box A.2. Generalized Fenchers equalities

APPEI\DIX C

The expression of the convex functional:::: associated with the saddle free energy cD is given hy:

::::(,).0"1 = suP: -<0". e>- -cD('). e):

;(A,l>,l:)+sup".,,:<G.e)+<x.'l)-(I-(l,)[IjJ(e)+IT(~Jl: ifii,E'J

-- Y. otherwise

In the case In whIch ,l, does not bciong to the set J this "sup" is + x. Hence. assuming ii, 1"1. the "sup"
ahove can be performed by evaluating separately the ,me acting on the state variable e from the other on 'l to get:

sup: ,,,. e) + <X.~) - (I-'l, )[I/I(f:) + IT('l)]:

ii, j sup


